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Abstract

Automatic placement of surveillance cameras in arbi-
trary buildings is a challenging task, and also one that is
essential for efficient deployment of large scale surveillance
networks. Existing approaches for automatic camera place-
ment are either limited to a small number of cameras, or
constrained in terms of the building layouts to which they
can be applied. This paper describes a new method for de-
termining the best placement for large numbers of cameras
within arbitrary building layouts. The method takes as in-
put a 3D model of the building, and uses a genetic algorithm
to find a placement that optimises coverage and (if desired)
overlap between cameras. Results are reported for an im-
plementation of the method, including its application to a
wide variety of complex buildings, both real and synthetic.

1. Introduction
The placement of cameras within a surveillance network

critically affects its performance. This paper investigates
the problem of finding the optimal arrangement for a set of
cameras, and describes software which has been created to
achieve this goal. It describes typical industry practice, and
explores the state of the art in automated camera placement.

Traditional camera placement methods are heavily re-
liant upon human expertise, perhaps with the assistance of
specialised 3D modelling software [6]. Such a process is
workable for networks up to tens of cameras, but rapidly
degrades as the scale of the network increases. Recent ad-
vancements in intelligent analysis algorithms[12, 4, 13] can
use automated or semi-automated techniques to assist se-
curity operators, however human experts who focus upon
camera placement are often not experienced with such sys-
tems and find it difficult to place cameras to utilise them
effectively. Thus the paper describes a software system de-
veloped to identify the optimal placements for a set of cam-
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eras given the shape of the space to be observed, the number
and type of cameras available, and the level of automated
software assistance desired.

The software uses a 3D model of the space to be ob-
served in order to calculate the fields of view of each of the
cameras in the network. By contrast, most existing systems
operate on a building floor plan, and calculate visibility only
in 2D (see [3] for example). The 3D approach is superior
in that it calculates visibility where it is relevant: for ex-
ample, on the upper torso or head of the target rather than
the floor. It also takes into account obstacles to the view of
the camera that cannot be represented accurately on a 2D
floor plan, because their shape varies with height. Exam-
ples of such obstacles include anything that does not stretch
uniformly from floor to ceiling, such as signs, partitions,
furniture, equipment and even other people.

Using 3D techniques leads to more relevant measures of
how “useful” a camera placement is, based upon the poten-
tial of cameras to observe actual targets to a required degree
of accuracy, rather than just their ability to observe an area.
In this paper, we focus on faces as they are currently used
in surveillance as a key identifying feature; however it is
also possible to use a full human model to allow for anal-
ysis based upon the entire individual. Additionally, using
3D models allows for enhanced visualisation of the camera
placement results, which gives the network operators better
tools for manually deciding on how to place cameras.

Most large scale video surveillance systems currently in-
stalled, or being installed, use human experts for camera se-
lection and placement. However, the human camera place-
ment technique is incapable of effectively weighing up the
multitude of competing factors which must be considered
for even a relatively small network. The optimal placement
of cameras for accurate analysis depends upon the level of
automation to be used. The required coverage and level of
view overlap between neighbouring cameras increases for
higher levels of automation. This is due to the limitations of
techniques for tracking targets between camera views. Cov-
erage requirements will affect the cost of the system, due to
the implied increase in the number of cameras required, and
the cabling and computing equipment to needed to accomo-
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date them.
The rest of this paper is structured as follows. Section 2

describes a range of work from the literature related to cam-
era placement. Section 3 describes the algorithm developed
to determine an optimal camera placement for a particular
3D model. In Section 4 we describe the results of testing
the placement software upon a range of models from a cir-
cular room, to more complex models including a floor plan
based model of the Changi international airport in Singa-
pore, and a realistic three storey office building. Finally,
Section 5 summarises the contribution of the paper and of
the developed software.

2. Related Work
Early literature in the area of camera placement has been

modelled upon the Art Gallery Problem (AGP) [9] and
its variants like the Floodlight Illumination Problem (FIP)
[1]. The AGP requires the assignment of a minimal set of
‘guards’ to monitor all points on the boundary of an arbi-
trary polygon, which for camera placement will be sourced
from a 2D floor plan. Efficient algorithms have been devel-
oped that yield approximate solutions this problem; how-
ever the exact solution has been shown to be NP-hard [9].
The FIP aims to ‘illuminate’ a polygonal area. Unfortu-
nately, current algorithms designed to solve these problems
employ many assumptions that are violated in the camera
placement problem. Camera properties, such as field of
view or resolution, are not taken into account.

The current literature on the placement of surveillance
cameras falls into two categories: those that aim to assist a
human operator to manually place cameras, and those that
seek to automate the process. The work of Reiffel et al. [11]
describes a tool called DOTS, which provides a graphical
interface to manually place cameras within a virtual envi-
ronment. It provides a floor plan and 3D model over which
the camera positions are superimposed, allowing the opera-
tor to view the scene as the camera would observe it. Whilst
this system allows for the visualisation of the scene and can
include furniture and modelled people, it explicitly requires
a human expert to optimise the camera positions. Williams
et al. examine the optimal placement of cameras to reduce
occlusions; however mostly in the context of creating de-
tailed object models from dense camera arrays rather than
for surveillance [14].

Murray et al. examined occlusion as a camera placement
driver with large outdoor environments [7]. However ob-
ject resolution, an important consideration when surveilling
large areas, is ignored.

Erdem and Scarloff [3] provide one of the earliest works
to look specifically at realistic camera placements. They
employ constraints on potentially visible of areas of a floor
plan, the most likely resolution at which objects might be
observed, and introduced regions where high object resolu-

tion is required. However, this approach was again based
on a 2D floor plan.

Ram et al. [10] formally defined a design methodology
for obtaining the optimal set of sensors and their placement.
They first define a performance metric for accomplishing
a particular task given to the sensors, taking into account
their placement. Next, they determine all the combinations
of sensors, along with their placement, whose performance
metric meets or exceeds some limit, then finally determine
and output the combination with the least cost. They outline
a cost function that can be used to increase the number of
frontal observations of objects , which is beneficial for some
surveillance tasks, such as facial recognition.

Zhao and Cheung [17] document an alternate approach
based on a concept called visual tags. A visual tag is dis-
tinctive tag physically attached to a person in the scene. The
tag is designed to provide identification information easily,
and allow privacy filtering to be automatically carried out
on the video from the cameras. Each tag has an associ-
ated orientation . An optimal camera placement is achieved
in two–dimensions by maximising the number of synthetic
tags visible to the cameras, after being spread evenly across
the scene. This system also optimises the number of cam-
eras viewing the scene but the results presented are for small
rooms.

Horster and Lienhart [5] developed a method that also
uses a floor plan, similar to of [3], but allow the user to
specify an importance distribution as an overlay of the ob-
servable space. This allows the focus to remain upon areas
of higher importance or higher traffic. This system is still
only two–dimensional, however, and the examples shown
in the paper are relatively simple.

Yabuta and Kitazawa [15] present a fast method that op-
timises camera placement through the use of simplified,
block based, scene model. Unlike previous methods, they
use variable sized region blocks to determine visibility, and
propose to weight these based upon their importance. This
is both the major innovation and the major drawback of
this method. The use of the block structure makes the
method fast, but also render it unable to function in any
scene with non–axis–aligned walls, which is very common
in real buildings.

Yao et al. [16] extend the placement of cameras to con-
sider not only coverage, but also overlap to allow for auto-
mated tracking processes. Similar to Erdem et al. [2] these
are evaluated based upon a 2D floor plan, although they do
consider tracking failures in their evaluation. The model
of overlap employed in this paper is sophisticated, treating
the edges of the camera views differently to allow explicit
modelling of camera hand–off. Once again, the example
placements shown in the paper are simple.

The previous work presented in this section has a range
of different methods, each of which employs a constrained



scene model and, in general, was only demonstrated on
small numbers of cameras. However, none of these have
addressed nor employed the use of rich 3D models where
there may be partial occlusions, such as those that occur due
to roof mounted signs and fixtures, furniture or other ground
based obstructions. The system presented in this report aims
to exceed the state–of–the–art and overcome many of the
limitations present within these methods.

3. Automatic Camera Placement
The first, and most important, step in the system is the

loading and annotating of the 3D model. Once this step has
been completed by the user, the automatic system takes over
to produce an optimal camera placement.

3.1. Scene Models

Extracting important information, such as floor and ceil-
ing location, directly from a 3D model is difficult, unless a
large number of constraints are applied to the model. This
system instead allows to user to supply metadata to assist
the interpretation of the model. In particular, the scale and
orientation of the model, along with the location of the
floors and ceilings, are expected to be provided by the user.

In real buildings, there may be a number of architectural
features which complicate the acquisition of model meta-
data. Stairs and ramps can both cause difficulties. Stairs
must simply be handled by selecting each tread as part of
the floor. Ramps are detected as part of the floor automati-
cally, if their incline is within a selectable limit. The same
applies to ceilings, allowing curved or cathedral ceilings to
be incorporated.

Further, the model must be comprehensive, as it is relied
upon during camera placement. This means that light fix-
tures, roof vents, signage, furniture, etc., are all represented
in the model. If not, the system may place cameras on or
behind one of these fixtures.

3.2. Parameterisation

A camera floating in the air, free of physical constraints,
has six parameters to describe its location. Three of these
describe its position, the remaining three describe its ori-
entation. The orientation parameters can be seen as three
angles: pan, tilt and roll. Pan and tilt are the most important
of these, roll less so. A human installer would rarely mount
a camera which wasn’t level, so the roll parameter can be ig-
nored for the sake of simplicity. The position of the camera
can also be constrained since, for an internal surveillance
network, cameras will generally be mounted on the ceiling.
If the building has a number of levels, then the camera may
reside on the ceiling of any one of them.

Cameras also have a number of internal, or intrinsic, pa-
rameters. For a surveillance camera, the most important of

these is the zoom, or focal length. There are other as well,
such as the sensor size of the camera, and the number of
pixels the camera can capture. In the current system, the
sensor size and number of pixels the camera can capture are
chosen by the user.

The most straight–forward parameterisation for a cam-
era position is a three vector, with x, y and z coordinates.
Figure 1 shows a 2D example of this parameterisation. A
simple solution to this problem is to use the three–vector
approach, but correct the location each time it is changed so
it lies on a valid surface.

Generated 3D Point Location

Corrected 3D Point Location

Figure 1. An example of the constrained 3D point parameterisa-
tion. Each point is represented by a full three–vector, but when it
is generated, it is ‘snapped’ onto the nearest part of the roof.

This approach is simple and highly flexible, however it
has two downsides. It again allows a large number of invalid
locations, but these are removed via the correction. The sec-
ond downside is that the correction itself can be computa-
tionally expensive if not implemented carefully. The cor-
rection is performed by projecting the point onto the plane
of the triangle that contained the originating point, and it is
then tested to see if it lies within the boundaries of the trian-
gle. If so, the point is already on the surface, so nothing fur-
ther needs to be done. If not, the triangle’s neighbours are
examined, a similar process is performed, and the closest
point to the original uncorrected point is taken. An example
of this is shown in Figure 2.

Point perturbed by Gaussian noise

Orthogonal projection onto triangle

Point `hops’ across triangles

Figure 2. An example of the correction algorithm, when applied to
a point that has moved outside the surface.



3.3. Cost Function

In order to estimate a camera placement, a function for
evaluating the quality of a particular placement is required.
Once such a function is available, an optimiser can be ap-
plied to adjust the parameters such that the quality of the
solution increases.

To create a specification for this function, the qualities
that an ideal solution must posses need to be enumerated:

1. A high degree of coverage of the area under surveil-
lance

2. Overlap in camera views

3. Targets’ image sizes fall within a specified range

These different properties can all be measured in a very nat-
ural way, that fits well in the problem space. If all the ar-
eas of the building where people can stand are identified, a
set of markers can be spawned that cover this space. Two
different distribution methods were trialled, with no dis-
cernible difference: a uniform sampling and a random sam-
pling. The markers were designed to represent a person, and
can either be a cube floating at head height, roughly the size
of a human head, or a rectangular cuboid the size of a full
human.

Each of the desired properties can then be expressed in
terms of which of these markers are visible in the cameras.
For each person, a counter is stored which records, for a par-
ticular camera configuration, how many cameras are able to
see it. The coverage metric could simply obtained by count-
ing how many markers are seen by at least one camera. The
overlap metric could be considered as the number visible by
two or more cameras. The pixel count is obtained by simply
rendering the marker into each candidate camera, and only
incrementing the counter if the number of pixels it covers is
sufficiently high or low. The count can be computed easily
using occlusion queries [8].

An occlusion query is executed by first generating a
depth–map of the scene, shown in Figure 3, as seen by the
candidate camera. This map is simply the depth of the scene
for each pixel in the cameras view. Once this map has been
acquired, an occlusion query is performed by comparing
the depth of each imaged pixel in the marker to the depth
map. Each imaged pixel that is closer than the correspond-
ing depth map pixel is counted. If this count is greater than
zero, the marker is visible.

The value of this count can be used to filter out small,
or mostly occluded markers. The visibility test is simply
modified to compare to a lower bound, pmin. If the number
of visible pixels, p, is above this bound, then the marker
is visible. This idea can be extended to an upper bound,
pmax, as well – once a certain number of pixels are visible,
it is no longer useful to obtain more. Thus, the final cost

Figure 3. This figure shows an image from the interior of a building
on the left, and its associated depth map on the right. The depth
map provides a measure of the distance from the camera to each
point in the scene.

function takes on the form of a clamping function, shown
below. In practice, ignoring small targets leads to cameras
which focus too tightly on the tops of the markers. Thus,
small targets are just given a reduced score.

c = (p− pmin)/(pmax − pmin) (1)

Ccoverage =


p ≤ pmin,

p
pmin

pmin ≤ p ≤ pmax, 0.9c+ 0.1
p ≥ pmax 1

(2)

The overlap metric is treated in a similar way. The num-
ber of cameras that can see each marker are counted, and
then assigned an appropriate cost. In most cases, the only
values of interest are two, three and four or more. If one
is returned, then no overlap is present, so the value of the
metric is zero. For the remaining cases, cost values were
chosen empirically, and are currently given by:

Coverlap =


v ≤ 1, 0
v = 2, 1
v = 3, 1.5
v ≥ 4 1.75

(3)

where v is the number of cameras viewing the given marker.
The two metrics must be combined into a single value, to

provide the final cost for a particular camera configuration.
Different scenarios will require camera configurations with
more or less overlap, so the user is able to chose the extent
to which overlap is favoured over coverage, via a simple
slider. The slider produces a value, α, between zero and
one, yielding a final cost of:

C = (1− α)Ccoverage + αCoverlap (4)

3.4. Optimiser

There are many different types of optimiser currently
available, and the structure of the problem is the main guide
as to which one is most appropriate. In this case, there is
no initial solution available, so one must be generated. It is
also unlikely that gradients can be computed since the cost
function as stated is essentially discrete, and its evaluation
is very complex, due to the use of occlusion queries.



Thus, the most appropriate class of optimiser is a search–
based algorithm. A commonly choice in this area is a Ge-
netic Algorithm (GA). GAs are able to search very compli-
cated spaces with no prior information, other than the cost
function itself. They are also ammenable to customisation,
making them more tightly bound to the problem in ques-
tion, and able to more quickly probe the solution space and
locate optima.

For this project, customisation of the mutation and
cross–over operators is critical to obtaining good perfor-
mance. Each member of the population is a set of cameras,
so the cross–over operator simply takes two such members
and swaps a subset of the cameras from each. The muta-
tion operator uses a Gaussian to perturb some of the camera
parameters for any member chosen for mutation. The mag-
nitude of the Gaussian noise is provided by the user, and is
based on the range of each parameter.

4. Evaluation
The camera placement tool has been evaluated with a

variety of real and synthetic 3D models, and with up to 400
cameras. The focus of testing was to validate the ability of
the automatic placement tool to achieve optimal solutions,
and also to verify that generated placements respond appro-
priately to variations in parameters related to the purpose
of the surveillance network. Note that determining the true
optimal camera placement is very difficult, and would likely
require a time–consuming, brute–force search.

Figure 4 shows an example of a typical surveillance ap-
plication – namely a small office. The results shown are
drawn from a placement of eight cameras. The system has
placed a camera in each office, and then staggered the re-
maining cameras throughout the space, resulting in excel-
lent overlap and coverage. The placement of the two blue
cameras is interesting, as it maximises the overlap in a very
small region. The placement of the purple camera is also of
note, as a human designer would be unlikely to select that
location, which optimises overlap within the corridor.

The second example is a 3D model of a typical office
building, with representative internal structure. Figure 5
shows an overview of the results from each level. The ben-
efit of using the 3D model is apparent in this example as the
system is able to both draw upon and work around the in-
ternal structure of the building. The resulting placement is
very effective, composed of only 32 cameras. The black
areas of the model are not visible, since they lie behind
walls. An effective placement would likely be generated
with fewer cameras, at the cost of reduced overlap.

5. Conclusion
Achieving a cost effective placement of the cameras in

a surveillance network is challenging, particularly for large

scale networks. It is also critical to the long term perfor-
mance, effectiveness and maintainability of the network.
The approach described in this report both significantly ad-
vances the state of the art and delivers a valuable tool that
has been demonstrated to calculate automatic camera place-
ments for a variety of situations. The major contribution
of the approach is that it allows an operator to rapidly cre-
ate a camera placement for a new surveillance network in-
stallation. Results reported for this new hybrid approach
demonstrate its enhanced efficiency when compared to ex-
isting practice.

There is significant scope for further work on the algo-
rithm. Selecting the number of cameras automatically is
a high priority, along with selecting a more efficient min-
imiser. Even without these extensions, the algorithm repre-
sents a significant improvement over the state of the art.
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